miércoles, 3 de octubre de 2012

Bombas «sucias»


Se las confunde con bombas nucleares cuando en realidad no tienen nada que ver unas con otras. Son las «bombas sucias», consistentes en la expansión mediante un explosivo convencional de material radiactivo sobre una área de terreno con el fin de provocar daños a la salud de las personas e impedir la habitabilidad de un territorio, dejando secuelas de este hecho sobre todo aquel ser humano que habite en ese lugar.
Estas armas son más accesibles que las verdaderas armas nucleares por su diseño mucho más sencillo, aunque con un elevado daño potencial para las víctimas que la sufran. Este tipo de artefacto no se puede calificar, sin embargo, como bomba nuclear ya que no hace uso de reacción nuclear alguna. Lo único que tienen en común las bombas sucias y las nucleares es el uso de elementos radiactivos en su dispositivo.
Los proyectiles de uranio empobrecido usados por los ejércitos actuales no tienen la consideración de bombas sucias, pues no tienen efectos radiactivos. Se trata del aprovechamiento del uranio empobrecido resultante de la fabricación de uranio enriquecido para los usos civiles de la energía nuclear. Una de las ventajas que aporta el uranio empobrecido en los proyectiles es su elevada densidad como material (mayor que la del plomo), lo que facilita su poder de penetración. Otra es su carácter incendiario, ya que al superar los 600 °C arde espontáneamente. Esto provoca que al penetrar en el objetivo tras el impacto, el proyectil arda instantáneamente incendiando todo lo que está a su alrededor (por ejemplo, la tripulación de un carro de combate y toda su carga explosiva).
Por desgracia, el uso de uranio empobrecido procedente de combustible nuclear reprocesado (y no del sobrante del enriquecimiento de uranio) hace que contenga trazas de plutonio, material altamente radiactivo que puede provocar cáncer y enfermedades severas a los humanos que entren en contacto con él. Los ejércitos que han usado en sus arsenales este material (EE. UU. Principalmente) han reconocido la presencia de trazas de plutonio en sus proyectiles a la vez que se han comprometido a tomar medidas para evitar la contaminación radiactiva tras su uso.

Denuncia sobre una tercera bomba nuclear (Irak-1991)
En 2008, el exmilitar estadounidense Jim Brown, ingeniero de cuarto grado que combatió en la Operación Tormenta del Desierto de la primera Guerra del Golfo, acusó a la Administración de Estados Unidos de haber lanzado una bomba nuclear de penetración de 5 kilotones de potencia, en una zona situada entre Basora y la frontera con Irán, el 27 de febrero de 1991, último día del conflicto. La cadena pública italiana Rainews24, perteneciente a la RAI, emitió la acusación en un reportaje dirigido por Maurizio Torrealta, tras haber verificado que el Centro Sismológico Internacional registró aquel día, en esa zona, un movimiento sísmico de 4,2 grados en la escala sismológica de Richter, potencia equivalente a 5 kilotones.
En los dos únicos actos de guerra atómicos contra civiles de la Historia humana se utilizaron bombas de 16 kilotones (Hiroshima) y 25 kilotones (Nagasaki).1
La investigación incluye datos sobre el aumento de los casos de cáncer y tumores en Basora. Según las declaraciones de Dott Jawad Al Ali (jefe de oncología del hospital local), se ha pasado de 32 casos anuales (en 1989) a más de 600 casos (en 2002). Al Ali opina que la aparición de cánceres muy raros en adultos y sobre todo en niños podría deberse a la utilización irrestricta de proyectiles con uranio empobrecido por parte del ejército estadounidense

Explosiones nucleares más importantes en la historia


Explosiones nucleares más importantes en la historia
Lugar    País objetivo     Probador o lanzador de la bomba           Nombre            Potencia            Año
Alamogordo      Estados Unidos           Estados Unidos           Trinity   20 kt     1945
Hiroshima         Japón  Estados Unidos           Little Boy          12,5 kt  1945
Nagasaki          Japón  Estados Unidos           Fat Man            20 kt     1945
Semipalatinsk   Unión Soviética           Unión Soviética           RDS-1  22 kt     1949
Trimouille          Australia          Reino Unido     Hurricane          25 kt     1952
Atolón Bikini     Estados Unidos           Estados Unidos           Castle Bravo     15 Mt    1954
Nueva Zembla  Unión Soviética           Unión Soviética           Bomba Tsar      50 Mt    1961
Lop Nor            China  China  596       22 kt     1964
Kwijili   Corea del Norte           Corea del Norte           -           1 kt      2006













Bombas de neutrones


La bomba de neutrones, también llamada bomba N, bomba de radiación directa incrementada o bomba de radiación forzada, es un arma nuclear derivada de la bomba H que los Estados Unidos comenzaron a desplegar a finales de los años setenta. En las bombas H normalmente menos del 25% de la energía liberada se obtiene por fusión nuclear y el otro 75% por fisión. En la bomba de neutrones se consigue hacer bajar el porcentaje de energía obtenida por fisión a menos del 50%, e incluso se ha llegado a hacerlo de cerca del 5%.
En consecuencia se obtiene una bomba que para una determinada magnitud de onda expansiva y pulso térmico produce una proporción de radiaciones ionizantes (radiactividad) hasta 7 veces mayor que las de una bomba H, fundamentalmente rayos X y gamma de alta penetración. En segundo lugar, buena parte de esta radiactividad es de mucha menor duración (menos de 48 horas) de la que se puede esperar de una bomba de fisión.
Las consecuencias prácticas son que al detonar una bomba N se produce poca destrucción de estructuras y edificios, pero mucha afectación y muerte de los seres vivos (tanto personas como animales), incluso aunque estos se encuentren dentro de vehículos o instalaciones blindadas o acorazadas. Por esto se ha incluido a estas bombas en la categoría de armas tácticas, pues permite la continuación de operaciones militares en el área por parte de unidades dotadas de protección (ABQ).

Bomba de hidrógeno o termonuclear


Las bombas de hidrógeno lo que realizan es la fusión (no la fisión) de núcleos ligeros (isótopos del hidrógeno) en núcleos más pesados.La bomba de hidrógeno (bomba H), bomba térmica de fusión o bomba termonuclear se basa en la obtención de la energía desprendida al fusionarse dos núcleos atómicos, en lugar de la fisión de los mismos.La energía se desprende al fusionarse los núcleos de deuterio (2H) y de tritio (3H), dos isótopos del hidrógeno, para dar un núcleo de helio. La reacción en cadena se propaga por los neutrones de alta energía desprendidos en la reacción.Para iniciar este tipo de reacción en cadena es necesario un gran aporte de energía, por lo que todas las bombas de fusión contienen un elemento llamado iniciador o primario, que no es sino una bomba de fisión. A los elementos que componen la parte fisionable (deuterio, tritio, litio, etc) se les conoce como secundario.La primera bomba de este tipo fue detonada en Eniwetok (atolón de las Islas Marshall) el 1 de noviembre de 1952, durante la prueba Ivy Mike, con marcados efectos en el ecosistema de la región. La temperatura alcanzada en la «zona cero» (lugar de la explosión) fue de más de 15 millones de grados, tan caliente como el núcleo del Sol, por unas fracciones de segundo.Técnicamente hablando las bombas llamadas termonucleares no son bombas de fusión pura sino fisión/fusión/fisión, la detonación del artefacto primario de fisión inicia la reacción de fusión como la descrita pero el propósito de la misma no es generar energía sino neutrones de alta velocidad que son usados para fisionar grandes cantidades de material fisible (235U, 239Pu o incluso 238U) que forma parte del artefacto secundario.


Bomba de plutonio

El arma de plutonio es más moderna y tiene un diseño más complicado. La masa fisionable se rodea de explosivos convencionales como el RDX, especialmente diseñados para comprimir el plutonio, de forma que una bola de plutonio del tamaño de una pelota de tenis se reduce casi al instante al tamaño de una canica, aumentando increíblemente la densidad del material, que entra instantáneamente en una reacción en cadena de fisión nuclear descontrolada, provocando la explosión y la destrucción total dentro de un perímetro limitado, además de que el perímetro se vuelva altamente radiactivo, dejando secuelas graves en el organismo de cualquier ser vivo




Bomba atómica


Una bomba atómica es un dispositivo que obtiene una gran cantidad de energía de reacciones nucleares. Su funcionamiento se basa en provocar una reacción nuclear en cadena descontrolada. Se encuentra entre las denominadas armas de destrucción masiva y su explosión produce una distintiva nube en forma de hongo. La bomba atómica fue desarrollada por Estados Unidos durante la II Guerra Mundial gracias al Proyecto Manhattan, y es el único país que ha hecho uso de ella en combate (en 1945, contra las ciudades japonesas de Hiroshima y Nagasaki).Su procedimiento se basa en la fisión de un núcleo pesado en elementos más ligeros mediante el bombardeo de neutrones que, al impactar en dicho material, provocan una reacción nuclear en cadena. Para que esto suceda hace falta usar núcleos fisibles o fisionables como el uranio-235 o el plutonio-239. Según el mecanismo y el material usado se conocen dos métodos distintos para generar una explosión nuclear: el de la bomba de uranio y el de la de plutonio.En este caso, a una masa de uranio llamada subcrítica se le añade una cantidad del mismo elemento químico para conseguir una masa crítica que comienza a fisionar por sí misma. Al mismo tiempo se le añaden otros elementos que potencian (le dan más fuerza) la creación de neutrones libres que aceleran la reacción en cadena, provocando la destrucción de un área determinada por la onda de choque desencadenada por la liberación de neutrones.Efectos de una Explosión NuclearLa explosión de una bomba atómica es un fenómeno físico que se basa en la transformación de la masa en energía según la famosa ecuación deducida por Albert Einsteinreduciéndose ésta, al ser menor la masa del átomo final, convirtiéndose la diferencia en energía.En todas estas bombas se libera una ingente cantidad de energía en forma de calor y radiación de todas las longitudes de onda. Como consecuencia, se producen procesos convectivos en el aire y la materia sólida (polvo) del suelo se levanta en las proximidades de la explosión. Una explosión de 20 megatones aras del suelo produciría un cráter de 183m.Algunos mili-segundos después de la detonación, en torno a un 50% aproximadamente del total de energía liberada por la fisión nuclear o fusión nuclear, se deposita por radiación electromagnética en la masa de aire, volviéndose incandescente, con un color rojizo debido al óxido nitroso, la famosa bola de fuego. Dicha bola adquiere una altísima temperatura de una forma vertiginosa, alcanza temperaturas de 300 millones de ºC, varias veces superior al de la superficie del Sol, así como una luminosidad equivalente.La rápida expansión de la bola de fuego genera una onda de choque como cualquier explosión, pero de una potencia muy superior, ya que puede aplastar o barrer edificios dañándolos muy seriamente o destruyéndolos por completo. Una bomba de 20 megatones no dejaría en un radio de 20 km más que escombros, sólo se salvarían las cimentaciones y construcciones enterradas.Por su baja densidad, al estar a una elevadísima temperatura, la bola asciende arrastrando una columna de polvo y materiales vaporizados altamente radioactivos mientras se va mezclando turbulentamente con el aire circundante. Al llegar a la tropopausa (límite entre la troposfera y la estratosfera) se ensancha formando el característico hongo, que luego deja su siembra radiactiva al precipitar en forma de finas cenizas en los territorios a sotavento de la explosión.El pulso electromagnético debido a intensa actividad de los rayos gamma genera mediante inducción una corriente de alto voltaje sobre antenas, vías férreas, tuberías, etc., que destruye todas las instalaciones eléctricas de una amplia zona si la explosión se efectúa a gran altura. Una detonación de 20 megatones a 200 km sobre el centro de Estados Unidos destruiría todos los circuitos eléctricos integrados de ésta y parte de México y Canadá.Bombas de Fusión y FisiónLa primera bomba atómica que se lanzó ocurrió un 16 de Junio de 1945 en el campo de pruebas de Trinity, cerca de Álamo Gordo (Nuevo México . Poseía una fuerza destructiva de 20 kilotones, es decir, equivalente a 20 toneladas de TNT (dinamita). Esta bomba estaba constituida de uranio, al igual que se lanzaría poco después sobre Hiroshima. Con el nombre de “little Boy” (chico pequeño), sólo necesitó convertir un gramo de masa (aunque toda la bomba como mecanismo pesara cuatro toneladas) para producir una potencia de 12´5 kilotones. Produjo la muerte de 120.000 personas de una población de 450.000 habitantes, causando otros 70.000 heridos.Tres días después cayó sobre Nagasaki “Fat Man” (hombre gordo), una bomba de Plutonio que duplicaba en potencia destructiva a la anterior, pero que causó 40.000 muertes y 25.000 heridos, además de varios miles que morirían después debido a heridas relacionadas, envenenamiento y radiación residual.Las bombas fisión nuclear o bomba termonuclear fusionan núcleos ligeros, isotopos del hidrógeno, en núcleos más pesados. Estos isotopos (deuterio y tritio) son átomos de hidrógeno con diferente número de neutrones en su núcleo, que al fusionarse producen un átomo más pesado de helio. La reacción en cadena se propaga por los neutrones de alta energía desprendidos en la reacción produciendo una potencia de 100 a 1000 veces superior a la de Uranio.La primera bomba de este tipo se lanzó en un atolón de las Islas Marshall en 1952. La temperatura que alcanzó el punto cero (lugar de la explosión) fue de más de 15 millones de grados, tan caliente como el núcleo del Sol, durante unos cuantos segundos, lo que provocó la vaporización de dicha isla. Las últimas bombas atómicas son las bombas de neutrones que producen poca destrucción de estructuras y edificios, pero mucha afectación y muerte de los seres vivos incluso aunque estos se encuentren dentro de vehículos o instalaciones blindadas o acorazadas.



Tecnología nuclear

                                             Tecnología nuclear
La tecnología nuclear es  la tecnología que está relacionada con las reacciones de núcleos atómicos de ciertos elementos. Las tecnologías nucleares más destacadas son: la energía nuclear, la medicina nuclear y las armas nucleares. Se han desarrollado aplicaciones desde detectores de humo hasta reactores nucleares, y desde miras de armas a bombas nucleares.


Historia y contexto científico
Descubrimiento
La vasta mayoría de los fenómenos naturales más comunes de la Tierra ocurren en el contexto de la gravedad y del electromagnetismo y no de las reacciones nucleares. Esto se debe a que los átomos de los núcleos se mantienen separados porque contienen cargas eléctricas positivas, y por lo tanto se repelen entre sí.

En 1896, Henri Becquerel estaba investigando la fosforescencia en sales de uranio cuando él descubrió un nuevo fenómeno al que denominó radioactividad.1 Él, Pierre Curie y Marie Curie comenzaron a investigar el fenómeno. En el proceso, ellos aislaron el elemento radio, que es altamente radioactivo. Ellos descubrieron que los materiales radioactivos producen intensos y penetrantes rayos de tres distintas clases, a los cuales denominaron alfa, beta y gama por las tres primeras letras del alfabeto griego. Algunos de estos podían pasar a través de la materia ordinaria y todos ellos podían ser dañinos para la salud en grandes cantidades. Todos los primeros investigadores recibieron quemaduras por radiación, parecidas a las causadas por quemaduras solares y no se preocupaban mucho al respecto.

El nuevo fenómeno de la radioactividad fue tomado por los fabricantes de medicinas falsas (como antes lo habían hecho también con la electricidad y el magnetismo) y se crearon una gran cantidad de medicinas falsas y tratamientos que usaban la radioactividad.

Gradualmente, se dieron cuenta que la radiación producida por el decaimiento radioactivo era radiación por ionización y que incluso cantidades demasiado pequeñas para causar quemaduras tenían severa peligrosidad a largo plazo. Muchos de los científicos que trabajaron con radioactividad murieron de cáncer como un resultado de su exposición a esta. Los primeros tratamientos y medicinas que usaban radioactividad desaparecieron pero otras aplicaciones de los materiales radioactivos persistieron, tales como el uso de sales de radio para producir diales auto iluminados en relojes y otros instrumentos.

A la medida que el átomo se comprendía mejor, la naturaleza de la radioactividad se conoció más claramente. Algunos grandes núcleos atómicos eran inestables y por lo tanto también su tasa de decaimiento (liberación de materia o energía) a intervalos aleatorios. Las tres formas de radiación que Becquerel y los Curíes descubrieron se comprendió de mejor manera. La desintegración o decaimiento Alfa es cuando un núcleo libera una partícula alfa, que es cuando dos protones y dos neutrones, equivalente a un núcleo de helio. La desintegración Beta es la liberación de una partícula beta, un electrón de alta energía. La desintegración Gamma libera rayos gamma, que a diferencia de las radiaciones alfa y beta no es materia sino que es radiación electromagnética de muy alta frecuencia, y por lo tanto energía. Este tipo de radiación es la más peligrosa y es la más difícil de bloquear. Estos tres tipos de radiación ocurren naturalmente en algunos elementos específicos.
Se ha llegado a la conclusión que la fuente original de la mayor parte de la energía de origen terrestre es nuclear, ya sea a través de la radiación del Sol que es causada por reacciones termonucleares estelares o por el decaimiento radioactivo del uranio dentro de la Tierra, la principal fuente de la energía geotermal.
Fisión
En la radiación nuclear natural, los subproductos son muy pequeños cuando se comparan a los núcleos de los cuales se originan. La fisión nuclear es el proceso de dividir un núcleo en dos partes aproximadamente similares, proceso que libera energía y neutrones. Si estos neutrones son capturados por otro núcleo inestable, estos también pueden fisionarse, lo que puede llevar a una reacción en cadena. La cantidad promedio de neutrones liberados por núcleos que influyen en la fisión de otro núcleo se llama k. Los valores de k más grandes que 1 significan que la reacción de fisión está liberando más neutrones de los que absorbe, y por lo tanto se le llama como una reacción en cadena auto sostenible. Una masa de material fisible lo suficientemente grande (y en una configuración adecuada) para inducir una reacción en cadena auto sostenible es llamada una masa crítica.
Cuando un neutrón es capturado por un núcleo adecuado, la fisión puede ocurrir de inmediato, o el núcleo puede persistir en un estado inestable por un corto tiempo. Si existen los suficientes decaimientos inmediatos para soporta la cadena en reacción, se dice sobre esa masa que es inmediatamente crítica, y la energía liberada crecerá rápida e incontrolablemente, lo que usualmente lleva a una explosión.Cuando se descubrió al principio de la Segunda Guerra Mundial, esta idea llevó a varios países a comenzar programas que investigaran la posibilidad de construir una bomba atómica — un arma que utilizara las reacciones de fisión para generar lejos mucho más energía de lo que era posible lograr con explosivos químicos. El Proyecto Manhattan, llevado a cabo por Estados Unidos con la ayuda del Reino Unido y de Canadá, desarrolló varias armas de fisión que fueron usadas contra Japón en 1945. Durante el proyecto, también se desarrollaron los primeros reactores de fisión, aunque ellos fueron usados principalmente para la fabricación de armas y no para generar electricidad.
Sin embargo, si la masa es crítica sólo cuando los neutrones retrasados están incluidos, la reacción puede ser controlada, por ejemplo mediante la introducción o remoción de materiales que absorben los neutrones. Esto es lo que permite que se puedan construir reactores nucleares. Los neutrones rápidos no son capturadas fácilmente por el núcleo, así su velocidad debe ser disminuida (neutrones lentos), generalmente mediante la colisión con el núcleo de un moderador de neutrones, antes de que puedan ser capturados con mayor facilidad. Actualmente, este tipo de fisión es comúnmente usada para generar electricidad.
Fusión
Si los núcleos son forzados a colisionar, ellos pueden producir lo que se conoce como fusión nuclear. Este proceso puede liberar o absorber energía. Cuando el núcleo resultante es más ligero que el del hierro, normalmente se libera energía; cuando el núcleo es más pesado que el del hierro, generalmente se absorbe energía. Este proceso de fusión ocurre en las estrellas, que derivan su energía del hidrógeno y del helio. Ellos forman, a través de la nucleosíntesis estelar, elementos ligeros (litio a calcio) así como algunos de los elementos más pesados (más allá del hierro y el níquel, a través del proceso-S). Los restantes elementos pesados, del níquel al uranio y más allá, es debido a la nucleosíntesis de supernovas, el proceso-R.
Por supuesto, estos procesos naturales de astrofísica no son ejemplos de la "tecnología" nuclear. Debido a la muy fuerte repulsión de los núcleos, la fusión es difícil de lograr de una forma controlada. La bomba de hidrógeno obtiene su enorme poder destructivo de la fusión, pero su energía no puede ser controlada. La fusión controlada es lograda en aceleradores de partículas; es de esta forma como se producen muchos elementos sintéticos. Un fusor también puede producir fusión controlada y es una útil fuente de neutrones. Sin embargo, ambos dispositivos funcionan con una pérdida neta de energía. Una fuente de energía de fusión controlable, viable ha probado ser elusiva, a pesar del ocasional engaño de la fusión fría. Las dificultades técnicas y teóricas han estorbado el desarrollo de tecnología de fusión de uso civil que funcione, aunque la investigación continúa actualmente en muchas partes en el mundo.
Inicialmente la fusión nuclear fue investigada sólo teoréticamente durante la Segunda Guerra Mundial, cuando los científicos del Proyecto Manhattan (liderados por Edward Taller) la investigaron como un método para construir una bomba. El proyecto fue abandonado después de concluir que se requeriría de una reacción de fisión para detonarla. Recién en el año 1952 la primera bomba de hidrógeno pudo ser detonada, llamada así debido a que usa las reacciones entre el deuterio y el tritio. Las reacciones de fusión son mucho más energéticas por unidad de masa de combustible nuclear que las reacciones de fisión, pero comenzar una reacción en cadena de fusión es mucho más difícil.
Armas nucleares
Un arma nuclear es un dispositivo explosivo que deriva su fuerza destructiva de las reacciones nucleares, ya sea por fisión o una combinación de fisión y fusión. Ambos tipos de reacciones liberan enormes cantidades de energía a partir de relativamente pequeñas cantidades de materia. Incluso dispositivos nucleares pequeños pueden devastar a una ciudad por la onda de choque, fuego y radiación. Las armas nucleares son consideradas como armas de destrucción masiva y su uso y control han sido un aspecto principal de la política internacional desde su debut.
El diseño de armas nucleares es más complicado de lo que parece ser. Un arma de este tipo debe contener una o más masas fisibles suscriticas lo suficientemente estables para ser desplegadas, para luego inducir o crear una masa crítica para poder detonarla. También es muy difícil asegurar que la reacción en cadena consuma una fracción significativa del combustible antes de que el dispositivo vuele en pedazos. La obtención de un combustible nuclear también es más difícil de lo que parece ser, ya que ninguna substancia de ocurrencia natural es lo suficientemente inestable para que este proceso ocurra.
Un isótopo de uranio, el uranio-235, ocurre naturalmente y es lo suficientemente inestable, pero siempre se encuentra mezclado con el isótopo más estable uranio-238. Este último compone más del 99% del peso del uranio natural. A continuación métodos de separación de isótopos basados en el peso de tres neutrones se deben realizar para enriquecer (aislar) el uranio-235.
De forma alternativa, el plutonio posee un isotopo que lo suficientemente inestable para ser utilizable. El plutonio no ocurre naturalmente, así que debe ser fabricado en un reactor nuclear.
Eventualmente, el Proyecto Manhattan fabricó armas nucleares basadas en cada uno de estos elementos. Ellos detonaron la primera arma nuclear en una prueba denominada "Trinity", cerca de Alamogordo, New México, el 16 de julio de 1945. La prueba fue realizada para asegurarse que el método de implosión funcionaría para detonar una bomba atómica. Una bomba de uranio, la Little Boy (en castellano: Niñito), fue lanzada sobre la ciudad japonesa de Hiroshima el 6 de agosto de 1945, seguida tres días más tarde por una basada en plutonio denominada Fat Man (en castellano: Gordo) lanzada sobre Nagasaki. Como resultado de la devastación y muertes sin precedente provocados por una sola bomba, el gobierno japonés se rindió, terminando con la Segunda Guerra Mundial.
Desde estos bombardeos ningún arma nuclear ha sido desplegada ofensivamente. Sin embargo, ellas provocaron que una carrera de armas se desarrollara para crear bombas cada vez más destructivas como una forma de disuasión nuclear. Apenas cuatro años más tarde, el 29 de agosto de 1949, la Unión Soviética detonó su primera arma de fisión. El Reino Unido la siguió el 2 de octubre de 1952, Francia el 13 de febrero de 1960 y China el 16 de octubre de 1964. Estos cinco países le es permitido poseer armas nucleares bajo el Tratado de No Proliferación Nuclear. Sólo cuatro estados soberanos reconocidos no son parte del tratado: India, Israel, Pakistán y Corea del Norte. India, Pakistán y Corea del Norte han probado abiertamente y declarado que poseen armas nucleares. Israel ha mantenido una política de ambigüedad respecto a su propio programa de armas nucleares. Corea del Norte accedió al tratado, lo violó y se retiró en el año 2003.
A diferencia de las armas convencionales, le intensa luz, calor y fuerza explosiva no son los únicos componentes mortales de un arma nuclear. Aproximadamente la mitad de las muertes de Hiroshima y Nagasaki fueron causadas entre dos a cinco años más tarde debido a la exposición a la radiación.2 3 Un arma radiológica es un tipo de arma nuclear diseñada para dispersar material nuclear peligroso en territorio enemigo. Tal arma no tendría la capacidad explosiva de una bomba de fisión o de fusión, pero podría matar muchas personas y contaminar una gran área. Un arma radiológica nunca ha sido desplegada. Mientras es considerada sin utilidad desde el punto de vista militar convencional, un arma de este tipo puede ser usada con fines de terrorismo nuclear.
Se han llevado a cabo sobre 2.000 pruebas nucleares desde 1945. En 1963, todos los estados nucleares y muchos no nucleares firmaron el Tratado de prohibición parcial de ensayos nucleares, obligándose a restringirse de realizar pruebas de armas nucleares en la atmósfera, bajo el agua o en el espacio exterior. El tratado permite la realización de pruebas nucleares subterráneas. Francia continuó con pruebas atmosféricas hasta 1974, mientras China continuó hasta 1980. La última prueba nuclear realizada por Estados Unidos fue en 1992, la Unión Soviética lo hizo en 1990, el Reino Unido en 1991, tanto Francia como China continuaron las pruebas hasta 1996. Después de firmar el Tratado de Prohibición Completa de los Ensayos Nucleares en 1996 (que al año 2011 no ha entrado en fuerza), todos estos estados se han obligado a terminar con todas las pruebas nucleares. Los estados no signatarios de India y Pakistán hicieron sus últimas pruebas en el año 1988.
Las armas nucleares son las armas conocidas más destructivas - el arquetipo de las armas de destrucción masiva. A través de la Guerra Fría, las potencias opuestas tenían enormes arsenales nucleares, suficiente para matar centenares de millones de personas. Generaciones de personas crecieron bajo la sombra de la devastación nuclear, ejemplificado en películas tales como Dr. Strangelove y The Atomic Cafe.
Sin embargo, la liberación de las enormes cantidades de energía implicadas en la detonación de un arma nuclear también sugirió la posibilidad de una nueva fuente de energía.
Usos civiles
Energía nuclear
La energía nuclear es un tipo de tecnología nuclear que tiene que ver con el uso controlado de la fisión nuclear para liberar energía para su uso pacífico, y que incluyen propulsión, calor y generación de electricidad. La energía nuclear es producida por una reacción en cadena controlada que crea calor como subproducto la que es usada para hervir agua, producir vapor y propulsar una turbina de vapor. La turbina es usada para generar electricidad y/o realizar trabajo mecánico.
En el año 2004 la energía nuclear proporciona aproximadamente el 15,7% de la electricidad mundial y es usada para propulsar portaviones, rompehielos y submarinos (hasta el momento el costo y el temor en algunos puertos ha prevenido el uso de la energía nuclear en buques de transporte).4 Todas las plantas de energía nuclear usan la fisión. A pesar de años de esfuerzos y el ocasional engaño (por ejemplo, la fusión fría), ninguna reacción de fusión hecha por el hombre ha producido más energía que la usada en su realización, lo que significa que aún no es una fuente viable para la generación de electricidad.
Aplicaciones médicas
Las aplicaciones médicas de la tecnología nuclear están divididas en diagnósticos y tratamientos por radiación.
Imágenes - las imágenes de rayos-X médico y dental usan cobalto-60 u otras fuentes de rayos-X. El tecnecio-99m es usado, agregado a moléculas orgánicas, como un trazador radioactivo en el cuerpo humano, antes de ser excretado por los riñones. Positrones que emiten nucleótidos son usados para la generación de imágenes de alta resolución, y corta vida en aplicaciones conocida como tomografía por emisión de positrones.
La terapia de radiación es un efectivo tratamiento para el cáncer.
Aplicaciones industriales
Exploración petrolera y de gas- El registro de pozos nuclear es usada para ayudar a predecir la viabilidad comercial de pozos nuevos o existentes. La tecnología implica el uso de una fuente de rayos gama o de neutrones y un detector de radiación que son bajados en el agujero de perforación para determinar las propiedades de la roca que lo rodea, tales como porosidad y litografía.
Construcción de caminos - Medidores nucleares de humedad/densidad son usados para determinar la densidad de los suelos, asfaltos y concretos. Normalmente se usa una fuente de cesio-137

Aplicaciones comerciales
Un detector de humo por ionización incluye una pequeñísima masa de americio-241 radioactivo, que es una fuente de radiación alfa. El tritio es usado con fósforo en miras de armas para aumentar su precisión en condiciones de poca visibilidad. Los letreros de salida auto iluminados usan la misma tecnología.

Procesamiento de comida y agricultura
La irradiación de la comida6 es el proceso por el cual la comida se expone a radiación ionizante con el propósito de destruir microrganismos, bacterias, virus o insectos que podrían estar presentes en la comida. Las fuentes de radiación usadas incluyen radioisótopos productores de rayos gama, generadores de rayos-X y aceleradores de neutrones. Otras aplicaciones incluyen la inhibición de brotes, el retraso de la maduración, el incremento de la producción de jugo y el mejoramiento de la rehidratación. La irradiación es un término más general donde la exposición deliberada de materiales a la radiación para lograr una meta técnica (en este contexto se presumen 'radiación por ionización'). Como tal también es usada en artículo no alimenticio, tales como instrumental médico, plásticos, tubos para gasoductos, mangueras para calefacción de pisos, materiales para embalaje de comida, repuestos para automóviles, alambres y cables (aislamiento eléctrico), neumáticos, e incluso piedras preciosas. Comparada a la cantidad de comida irradiada, el volumen de aplicaciones cotidianas es enorme pero es algo que no es notado normalmente por las personas.
El genuino efecto de procesar la comida por radiación ionizante se relaciona con el daño al ADN, la información genética básica para la vida. Los microrganismos no pueden proliferar y continuar sus actividades. La podredumbre causada por los microrganismos cesa. Los insectos no sobreviven o son incapaces de reproducirse. Las plantas no pueden continuar su ciclo natural de maduración o envejecimiento. Todos estos efectos son beneficiosos para el consumidor y la industria alimentaria.6
La cantidad de energía impartida para lograr una irradiación de comida efectiva es baja cuando se compara a la necesaria para cocinar y lograr el mismo efecto, incluso a una dosis típica de 10 kg y la mayor parte de la comida, que es (con respecto al propósito de calentamiento) equivalente al agua, se calentaría sólo en aproximadamente 2,5 °C (4,5 °F).
Lo especial del procesamiento de la comida por radiación ionizante es el hecho, de que la densidad de la energía por transición atómica es muy alta, puede romper las moléculas e inducir ionización (de ahí el nombre) lo que no puede ser logrado solo calentándola. Esta es la razón de los nuevos
Efectos beneficiosos, sin embargo al mismo tiempo surgen nuevas preocupaciones. El tratamiento de comida sólida por radiación ionizante puede producir un efecto similar a la pasteurización por calor en los líquidos, tales como la leche. Sin embargo, el uso del término, pasteurización fría, para describir las comidas irradiadas es controversial, debido a que la pasteurización y la irradiación son dos procesos fundamentalmente diferentes, aunque buscan resultados finales similares.
La irradiación de comida es actualmente permitida en más de 40 países y los volúmenes tratados exceden anualmente las 500.000 toneladas a nivel mundial.7 8 9
La irradiación de comida esencialmente es una tecnología no nuclear, se basa en la radiación de ionización que puede ser generada por aceleradores de neutrones, pero que también puede usar rayos gama producto del decaimiento nuclear. Existe una industria mundial para el procesamiento por radiación ionizante, la mayoría tanto por cantidad como por potencia de proceso se hace por aceleradores. La irradiación de comida es solo una aplicación nicho cuando se compara a los insumos médicos, materiales plásticos, materias primas, piedras preciosas, cables y alambres, etc.

Accidentes

Los accidentes nucleares, debido a las poderosas fuerzas involucradas, son a menudo muy peligrosos. Históricamente, los primeros incidentes tuvieron que ver con exposiciones fatales a la radiación. Marie Curie murió de anemia aplásica como resultado de los altos niveles de exposición que sufrió durante sus investigaciones. Otros dos científicos, un estadounidense y un canadiense, Harry Daghlian y Louis Slotin, murieron por mala manipulación de la misma masa de plutonio.
Los accidentes nucleares y radiológicos civiles normalmente tienen que ver con plantas de energía nuclear. Las causas más comunes son fugas que exponen a los trabajadores a material peligroso. Un derretimiento nuclear se refiere a un accidente más serio que implica la liberación de material nuclear al ambiente que rodea a la planta. Los accidentes de este tipo mas significativos ocurrieron en Three Mile Island, Pennsylvania y en Chernobyl en Ucrania. El terremoto y tsunami del 11 de marzo de 2011 causó serios daños a tres reactores nucleares y a una piscina de depósito de combustible gastado en la planta de energía nuclear de Fukushima Daiichi en Japón. Los reactores militares que experimentaron accidentes similares fueron Windscale en el Reino Unido y el SL-1 en Estados Unidos.
Los accidentes militares usualmente tienen que ver con la pérdida o detonación inesperada de armas nucleares. La prueba Castle Bravo en 1954 produjo un mayor rendimiento de lo esperado, esta prueba contaminó las islas cercanas, un buque pesquero japonés (con un muerto) y surgieron preocupaciones de peces contaminados en Japón. Entre la década de los 50 y de los 70, varias bombas nucleares fueron pérdidas desde submarinos y aviones, algunas de las cuales nunca se recobraron. Los últimos veinte años han visto una marcada declinación de accidentes semejantes.




Fisión nuclear


La fisión nuclear es una de las dos reacciones posibles que se producen cuando trabajamos con energía nuclear.
En energía nuclear llamamos fisión nuclear a la división del núcleo de un átomo. El núcleo se convierte en diversos fragmentos con una masa casi igual a la mitad de la masa original más dos o tres neutrones.

La suma de las masas de estos fragmentos es menor que la masa original. Esta 'falta' de masas (alrededor del 0,1 por ciento de la masa original) se ha convertido en energía según la ecuación de Einstein (E=mc2). En esta ecuación E corresponde a la energía obtenida, m a la masa de la que hablamos y c es una constante, la de la velocidad de la luz: 299.792.458 m/s2. Con este valor de la constante c ya se puede ver que por poca unidad de masa que extraigamos en una fisión nuclear obtendremos grandes cantidades de energía
La fisión nuclear puede ocurrir cuando un núcleo de un átomo pesado captura un neutrón, o puede ocurrir espontáneamente.
           

                             Cadena de reacciones nucleares

Una reacción en cadena se refiere a un proceso en el que los neutrones liberados en la fisión produce una fisión adicional en al menos un núcleo más. Este núcleo, a su vez produce neutrones, y el proceso se repite. El proceso puede ser controlado (energía nuclear) o incontrolada (armas nucleares).



Si en cada fisión provocada por un neutrón se liberan dos neutrones más, entonces el número de fisiones se duplica en cada generación. En este caso, en 10 generaciones hay 1.024 fisiones y en 80 generaciones aproximadamente 6 x 1023 fisiones.

                              Energía liberada por cada fisión nuclear
165 MeV ~ Energía cinética de los productos de fisión
7 MeV ~ Rayos gamma
6 MeV ~ Energía cinética de los neutrones
7 MeV ~ Energía a partir de productos de fisión
6 MeV ~ Rayos gama de productos de fisión
9 MeV ~ Anti-neutrinos de los productos de fisión
200 MeV
1 MeV (millones de electrón-voltios) = 1,609 x 10-13 Joules
                                                            Masa critica
Aunque en cada fisión nuclear  se producen entre dos y tres neutrones, no todos neutrones están disponibles para continuar con la reacción de fisión. Si las condiciones son tales que los neutrones se pierden a un ritmo más rápido de lo que se forman por la fisión, los que se produzcan en la reacción en cadena no será autosuficiente.
La masa crítica es el punto donde la reacción en cadena puede llegar a ser autosostenible.En una bomba atómica, por ejemplo, la masa de materias fisionables es mayor que la masa crítica.
La cantidad de masa crítica de un material fisionable depende de varios factores, la forma del material, su composición y densidad, y el nivel de pureza.
Una esfera tiene la superficie mínima posible para una masa dada, y por tanto, reduce al mínimo la fuga de neutrones. Bordeando el material fisionable con un neutrón adecuado "Reflector", la pérdida de neutrones pueden reducirse y la masa crítica puede ser reducida



                                                
                                                       Fisión nuclear controlada






Para mantener un control sostenido de reacción nuclear, por cada 2 o 3 neutrones puestos en libertad, sólo a uno se le debe permitir dar a otro núcleo de uranio. Si esta relación es inferior a uno entonces la reacción va a morir, y si es más grande va a crecer sin control (una explosión atómica). Para controlar la cantidad de neutrones libres en el espacio de reacción debe estar presente un elemento de absorción de neutrones. La mayoría de los reactores son controlados por medio barras de control hechas de neutrones de un fuerte material absorbente, como el boro o el cadmio.

Además de la necesidad de capturar neutrones, los neutrones a menudo tienen mucha energía cinética (se mueven a gran velocidad). Estos neutrones rápidos se reducen a través del uso de un moderador, como el agua pesada y el agua corriente. Algunos reactores utilizan grafito como moderador, pero este diseño tiene varios problemas. Una vez que los neutrones rápidos se han desacelerado, son más propensos a producir más fisiones nucleares o ser absorbidos por la barra de control.
¿Por qué se usa uranio y el plutonio?
Los científicos sabían que el isótopo más común, el uranio 238. Hay una probabilidad bastante alta de que un neutrón incidente sea capturado para formar uranio 239 en lugar de causar una fisión. Sin embargo, el uranio 235 tiene una probabilidad de fisión más alta.
Del uranio natural, sólo el 0,7% es de uranio 235. Esto significa que se necesita una gran cantidad de uranio para obtener la cantidad necesaria de uranio 235. Además, el uranio 235 no se pueden separar químicamente del uranio 238, ya que los isótopos son químicamente similares.
Los métodos alternativos tuvieron que desarrollarse para separar los isótopos.
El plutonio 239 tiene una probabilidad alta de fisión. Sin embargo, el plutonio 239 no es un elemento natural y debería hacerse.
Se trata de los materiales más usados en las centrales de energía nuclear.
                                     Fusión nuclear espontanea 



La tasa de la fisión nuclear espontánea es la probabilidad por segundo que un átomo dado se fisione de forma espontánea - es decir, sin ninguna intervención externa. El plutonio 239 tiene una muy alta tasa de fisión espontánea en comparación con la tasa de fisión espontánea de uranio 235.



                                     Aplicación pacificas de la fusión nuclear 
Una de las aplicaciones pacificas nuclear es la generación de electricidad utilizando el calor producido por una reacción en cadena controlada en un reactor nuclear .el reactor nuclear es un sistema construido para controlar la energía que se produce en reacción  en cadena y por tanto , impedir el aumento indefinido en el numero de fisiones. El reactor consiste básicamente en un contenedor cuyo interior se deposita el combustible nuclear, que puede ser uranio 235- o plutonio-239.


El combustible nuclear de uranio  se utiliza en forma de oxido U3 O8. El uranio natural contiene aproximadamente 0,7%del isotopo U-235, que es una concentración demasiado baja para sostener una pequeña reacción en cadena para que se trabaje con eficiencia, el combustible nuclear debe  enriquecerse con U-235 a una concentración del 3 al 4 %  

Una central nuclear es una instalación formada por un reactor conectado a un sistema de generación eléctrica. La energía obtenida en una central nuclear es enorme en comparación con la producida en una central termo eléctrica .Con la fisión nuclear de 1g de uranio se obtiene la misma cantidad de energía que con la combustión de 2500kg de carbón lo  que produciría la explosión de 30.000 kg de trinitulueno (TNT).


Hay dos grandes tipos de reactores Los reactores de potencia y los reactores de investigación. Los primeros funcionan básicamente como calderas, donde la fuente de color  es la fisión  de los átomos de U-235. Son ampliamente utilizados para la generación de electricidad y para impulsar grandes buques y submarinos militares. En tanto, los reactores de investigación emplean neutrones generados en el proceso de fisión para producir  radio isotopos de interés para irradiar materiales con fines de investigación científica y tecnológica .La energía térmica es generada es disipada al ambiente a través de torres de enfriamiento.